Superfund Research Program

The Superfund Research Program (SRP) supports practical research that creates benefits, such as lower environmental cleanup costs and reduced risk of exposure to hazardous substances, to improve human health. SRP funds colleges, universities, and small businesses, including the University of California, San Diego Superfund Research Center (UCSD SRC), to advance this work across the nation.

Research Highlights

Linking exposures to liver disease and cancer

The antibacterial chemical triclosan, which is added to many personal care products such as hand soap, can promote liver tumor formation in mice, according to University of California, Davis and UCSD SRC research.\(^1\) Michael Karin, Ph.D., and Robert Tukey, Ph.D., collaborated as part of their work to understand the effects of hazardous substances on liver function and cancer. They reported that triclosan exposure alone resulted in increased numbers of liver cells, increased liver damage, and decreased liver function. When mice were exposed to triclosan and a cancer-causing agent diethylnitrosamine (DEN) together, more mice had liver tumors and their tumors were larger compared to mice exposed to DEN alone.\(^1\) Karin’s UCSD SRC team also identified liver cells that were precancerous. They are using these cells to increase understanding of how normal cells become cancer cells using genetic and biochemical approaches.\(^2\)

Metal uptake in seeds and leaves of plants

The UCSD SRC team, led by Julian Schroeder, Ph.D., identified a gene that regulates how much of different metals accumulate in the seeds and leaves of plants.\(^3\) Some metals are important nutrients, like zinc and iron, but other metals, like cadmium, can be toxic to humans.\(^4\) This information may help scientists modify plants so they can absorb more metals from contaminated soil or water and be used as a tool for cleaning up Superfund sites. Researchers may also be able to reduce metal accumulation in plants to prevent exposures to metals that are present in certain foods, such as arsenic in rice.\(^5\)

A community garden as a living laboratory

Keith Pezzoli, Ph.D., and his team are working with the nonprofit Global Action Research Center to transform a vacant 20,000 square foot lot into a community garden and platform for environmental health education called the Ocean View Growing Grounds (OVGG).\(^6\) The lot in southeast San Diego is a brownfield site, which is previously-owned land that may contain hazardous substances. OVGG participants are working with UCSD SRC scientists and the city of San Diego to do environmental testing and develop strategies to clean up the site. The garden will transform one of San Diego’s disadvantaged neighborhoods into a food forest and living laboratory to test soils and plants.

1. Karin’s work shows how liver cells become cancerous after exposure to carcinogenic chemicals. (Photo courtesy of UCSD)
2. Metal uptake in seeds and leaves of plants
3. The UCSD SRC team, led by Julian Schroeder, Ph.D., identified a gene that regulates how much of different metals accumulate in the seeds and leaves of plants. Some metals are important nutrients, like zinc and iron, but other metals, like cadmium, can be toxic to humans. This information may help scientists modify plants so they can absorb more metals from contaminated soil or water and be used as a tool for cleaning up Superfund sites. Researchers may also be able to reduce metal accumulation in plants to prevent exposures to metals that are present in certain foods, such as arsenic in rice.
4. A community garden as a living laboratory
5. Keith Pezzoli, Ph.D., far right, is helping convert brownfields to urban gardens in San Diego, CA. (Photo courtesy of UCSD)
The importance of studying environmental contaminants

- Liver cancer was the fifth most frequently diagnosed cancer in 2010, with an estimated 23,000 deaths in 2014.\(^7\)
- Cadmium and arsenic exposures are associated with cancer, cardiovascular disease, lung disease, and other adverse health effects.\(^4,8\)

Research at the UCSD SRP Center

- Understanding genetic susceptibilities to arsenic and cadmium toxicity. (Paul Russell, Ph.D., prussell@scripps.edu)
- Researching protective effects of natural antioxidants in arsenic-induced liver disease. (Robert Tukey, Ph.D., rtukey@ucsd.edu)
- Understanding how pre-existing liver disease affects sensitivity to toxicant exposures. (David Brenner, Ph.D., dbrenner@ucsd.edu)
- Understanding effects of toxicants on precancerous liver cells and liver cancer, and how normal cells become cancer cells. (Michael Karin, Ph.D., karinoffice@ucsd.edu)
- Developing field-portable devices to detect hormone-disrupting and cancer-causing chemicals. (William Trogler, Ph.D., wtrogler@ucsd.edu)
- Investigating heavy metal uptake and detoxification in plants used for cleanup. (Julian Schroeder, Ph.D., jischroeder@ucsd.edu)
- Studying how Superfund contaminants affect cellular functions, and how changes are linked to health problems. (Ronald Evans, Ph.D., evans@salk.edu)

Sharing results

UCSD SRC works with the San Diego-Tijuana community, providing environmental health and scientific research information. Researchers also learn about community needs that may guide future UCSD SRC research. (Keith Pezzoli, Ph.D., kpezzoli@ucsd.edu)

Other contributions to advance science

- The UCSD SRC research support facility provides access to vital expertise and state-of-the-art resources for SRC research projects. (Pamela Mellon, Ph.D., pmellon@ucsd.edu; Mark Ellisman, Ph.D., mellisman@ucsd.edu)
- The UCSD SRC integrated, multidisciplinary training program provides early-career scientists access to diverse professionals, and encourages innovation to develop solution-oriented approaches to complex environmental health problems. (Pamela Mellon, Ph.D., pmellon@ucsd.edu)

References

3 Mendoza-Cózatl DG, Xie Q, Akmaljian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, Schroeder J, 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Molec Plant 7(9):1455-1469.